You are here: BP HOME > BPG > Euclid: Elementa > record
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
    Enter number of multiples in view:
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
gre I,0
θ῾ Ὅταν δὲ αἱ περιέχουσαι τὴν γωνίαν γραμμαὶ εὐθεῖαι ὦσιν, εὐθύγραμμος καλεῖται ἡ γωνία.
Pic629
eng
9. And when the lines containing the angle are straight, the angle is called rectilineal.
lat Sic
Quando vera continentes angulum recte fuerint, rectilineus vocatur angulus.
lat Gerard
[ix] Et quando due linee que hunc angulum continent fuerint recte, rectilineus vocabitur angulus.
lat Adelard
Quando que angulum continent due linee recte fuerint, rectilineus angulus nominatur.
lat Hermann
Quandoque angulum continet due linee recte fuerint: rectilineus angulus nominatur.
ara Uppsala 1v10-11
[٩] واذا كان الخطان المحيطان بالزاوية مستقيمين سميت ' المستقيمة الخطين
ara Tuṣi p. 3
فمنها مستقيمة الخطين {{ وغيرها }}
per Shirazi p. 8,7-8
و زاویه بعضی مستقیمه الخطین باشند و بعضی غیران
san 4,4-6
(4) iha samakoṇaḥ saralarekhābhyām eva bhavati | (5) viṣamakoṇaḥ saralarekhābhyāṃ saralakuṭilarekhābhyāṃ kuṭilarekhābhyāṃ ca (6) bhavati.
Pic393
lat Clavius p. 8
IX. CVM autem, quæ angulum continent lineæ, rectæ fuerint, rectilineus ille angulus appellatur.
ANGVLVS omnis planus conficitur aut ex lineis duabus rectis, qui quidem rectilineus dicitur, & de quo solum hîc agit Euclides: aut ex duabus curuis, quem curuilineum vocare licet; aut ex vna curua & altera recta, qui non ineptè mixtus appellatur. Ex hisce porro lineis possunt curuilinei anguli tribus variari modis, & mixti duobus, pro varia inclinatio ne, seu habitudine linearum curuarum, vtpote secundum conuexum, & concauum, ceu in propositis angulis planè, & apertè perspicitur. Rectilineus vero variari non potest ratione inclinationis, habitudinis ve linearum, nisi matorem, vel minorem inclinationem variam velimus dicere habitudinem, quod est absurdum; cum hoc modo augeatur tantum angulus rectilineus, aut diminuatur, quod & aliis εommune est, non autem ita varietur, vt aliud constituat genus.
Pic3338
kin 幾何原本 p.4
第九界
直線相遇作角。為直線角。
平地兩直線相遇。為直線角。本書中所論止是直線角。但作角有三等。今附蓍於此。
一直線角。二曲線角。三雜線角。 如下六圖。(p. 五)
Pic417
http://www2.hf.uio.no/common/apps/permlink/permlink.php?app=polyglotta&context=record&uid=a9ea4af6-561b-11df-870c-00215aecadea
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login