You are here: BP HOME > BPG > Euclid: Elementa > record
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
    Enter number of multiples in view:
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
gre I,0
ις῾ Κέντρον δὲ τοῦ κύκλου τὸ σημεῖον καλεῖται.
Pic629
eng
16. And the point is called the centre of the circle.
lat Sic
Centrum vero circuli punctus appellatur.
lat Gerard
[xvi] Illud autem punctum circuli est centrum.
lat Adelard
Et hic quidem punctus circuli centrum dicitur.
lat Hermann
Et hic quidem punctus: circuli centrum dicitur.
ara Uppsala 2r1
[١٦] وتلك النقطة هي مركز الدائرة
ara Tuṣi
وتلك النقطة ' مركزها
per Shirazi p. 8,17
و ان نقطه مرکز او
san 5,1
(5,1) binduś ca kendrasaṃjñaḥ |
Pic395
lat Clavius p. 13
XVI. HOC vero punctum, centrum circuli appellatur.
HOC ET, punctum illud intra circulum, à quo omnes lineæ rectæ ad circumferentiam ducta sunt æquales, appellari centrum circuli; quale est præcedentis figuræ punctum D. Vnde perspicuum est, polum alicuius circuli in sphæra, à quo omnes rectæ ad peripberiam circuli cadentes sunt æquales, vt ait Theodosius in sphæricis elementis, nom dici debere centrum circuli, cum punctum illud, quod polus dicitur, existat in superficie spbæræ, non autem in superficie circuli; quæ tamen est necessario requisita conditio, vt punctum aliquod centrum vocetur. Cæterum, vtpunctum aliquod circuli dicatur centrum, satis est, vt œb eo tres duntaxat lineæ cadentes in peripheriam sint æquales inter se, vt demonstrat Euclides propositione 9, lib. 3. Hac enim ratione fiet, vt omnes aliæ ab eodem puncto emissæ inter se sint æquales.
kin 幾何原本 p.7
第十六界
圜之中處。為圜心。。
Pic419
http://www2.hf.uio.no/common/apps/permlink/permlink.php?app=polyglotta&context=record&uid=a9eb61e8-561b-11df-870c-00215aecadea
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login