You are here: BP HOME > BPG > Euclid: Elementa > record
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
    Enter number of multiples in view:
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
gre I,0
ιζ῾ Διάμετρος δὲ τοῦ κύκλου ἐστὶν εὐθεῖά τις διὰ τοῦ κέντρου ἠγμένη καὶ περατουμένη ἐφ᾽ ἑκάτερα τὰ μέρη ὑπὸ τῆς τοῦ κύκλου περιφερείας, ἥτις καὶ δίχα τέμνει τὸν κύκλον.
Pic630
eng
17. A diameter of the circle is any straight line drawn through the centre and terminated in both directions by the circumference of the circle, and such a straight line also bisects the circle.
lat Sic
Diametros vero circuli est recta quedam per centrum ducta atque terminata in utrasque partes circuli periferia que et in duo equa secat circulum.
lat Gerard
[xvii] Diametrus circuli est linea recta transiens per ipsius centrum que pervenit in duabus partibus ipsius ad lineam comprehendentem ipsum secans eum in duo media.
lat Adelard
Diametros circuli recta linea est supra centrum eius transiens, que extremitates suas circumferentie applicans, circulum in duo media dividit.
lat Hermann
Diameter circuli: recta est linea que super centrum eius transiens atque terminas suos circumferencie applicans circulum in duo media dividit.
ara Uppsala 2r1-3
[١٧] وقطر الدائرة هو خط مستقيم ' يمر بمركز الدائرة وينتهي <في جانبين> إلى الخط المحيط بها وهو يقطعها نصفين '
ara Tuṣi p. 3
والخط المستقيم المار بالمركز المنتهي في جهتيه إلى المحيط قطرها
per Shirazi p. 8,17-19
و خطی مستقیم کی بر مرکز کذشته باشد و در هر دو جهت بمحیط رسیده قطر او و قطر دایره را بدونیم کند
san 5,2-3
(2) kendroparigataṃ sūtram ubhayataḥ pālisaṃlagnaṃ vyāsasaṃjñaṃ syāt | (3) vyāsasūtraṃ vṛttakṣetrasya samānaṃ bhāgadvayaṃ karoti |
Pic395
lat Clavius p. 14
XVII. DIAMETER autem circuli, est recta quædam linea per centrum ducta, & ex vtraque parte in circuli peripheriam terminata, quæ circulum bifariam secat.
SI in circulo ducatur recta linea A B, per centrum C, it a vt extrema eius A, & B, terminentur in peripheria, appellabitur ea circuli diameter. Non igitur omnis in circulorecta line a ducta diameter dicetur, sed ea solummodo, quæ per centrum vsque ad peripheriam vtrinque extenditur. Vnde plures assignari poterunt in circulo diametri, vnum vero centrum duntaxat. Quod autem Euclides addit, circulum bifariam secari a diametro, perspicuum ex eo esse potest, quod diameter per medium circulum, vtpote per centrum, ducitur. Hinc enim fit, vt propter directum diametriper centrum transitum, vtrinque æquales circumferentiæ abscindantur. Quod tamen Thaletem Milesium hac ratione demonstrasse testatur Proclus. Concipiamus animo, portionem A D B, accommodari, & coaptari portioni reliquæ A E B, itæ vt diameter A B, communis sit vtrique portioni: Si igitur circumferentia A D B, congruat penitus circumferentiæ A E B, manifestum est, duas illas portiones a diametro factas, esse inter se æquales, quandoquidem neutra alteram excedit: Si vero circumferentia A D B, non omni ex parte cadere dicatur super circumferentiam A E B, sed vel extra eam, velintra, vel partim extra, partim intra; tunc ductarecta à centro C, secante circumferentiam A D B, in D, & circumferentiam A E B, in E, erunt duærectæ C D, C E, ductæ ex centro ad circumferentiam eiusdem circuli æquales, per circuli definitionem, cum tamen vna sit pars alterius, quod est ab surdum. Non ergo cadet vna cir cumferentia extra aliam, vel intra, vel partim extra, partim intra, sed ambæ inter se aptabuntur, ideoqúe æquales erunt. quod demonstrandum proponebatur.
EX hac demonstratione constat, diametrum non solum circumferentiam, verum etiam totam aream circuli seoare bifariam. Cum enim semicir cumferentiæ sibi mutuo congruant, vt ostensum est, congruent etiam superficies ipsæ inter diametrum, & vtramque circumferentiam comprehensæ, cum neutra alteram excedat. Quare æquales inter se erunt.
Pic3346
Pic3347
kin 幾何原本 p.7
第十七界
自圜之一界作一直線。過中心至他界。為圜徑。徑分圜兩平分。
甲丁乙戊圜。自甲至乙、過丙心、作一直線。為圜徑。
Pic419
http://www2.hf.uio.no/common/apps/permlink/permlink.php?app=polyglotta&context=record&uid=a9eb8704-561b-11df-870c-00215aecadea
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login