You are here: BP HOME > BPG > Euclid: Elementa > record
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
    Enter number of multiples in view:
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
gre I,0
ιη῾ Ἡμικύκλιον δέ ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ᾽ αὐτῆς περιφερείας. κέντρον δὲ τοῦ ἡμικυκλίου τὸ αὐτό, ὃ καὶ τοῦ κύκλου ἐστίν.
Pic630
eng
18. A semicircle is the figure contained by the diameter and the circumference cut off by it. And the centre of the semicircle is the same as that of the circle.
lat Sic
Semicirculus est figura contenta sub diametro et deprehensa sub ipsa periferia. Portio circuli est figura contenta sub recta et circuli periferia vel maiore vel minore semicirculo.
lat Gerard
[xviii] Semicirculus est figura comprehensa a diametro et arcu quem diametrus a circumferentia divisit.
[xix] Portio circuli est figura contenta a linea recta et arcu qui est ex circumferentia circuli minore, videlicet, medietate eius aut maiore.
lat Adelard
Semicirculus est figura diametro circuli et medietate circumferentie conclusa. Portio circuli est figura recta linea et parte circumferentie contenta, semicirculo quidem aut maior aut minor.
lat Hermann
Semicirculus: est figura diametro circuli et medietate circumferencie contenta. Porcio circuli: est figura recta linea et parte circumferencie contenta, semicirculo quidem aut maior aut minor.
ara Uppsala 2r3-5
[١٨] ونصف الدائرة هو شكل يحيط به القطر والقوس التي حازها <القطر من> الخط المحيط ' وقطعة الدائرة هي شكل يحيط به خط مستقيم وطائفة من الخط المحيط إما ' أكبر وإما أصغر من نصف دائرة
ara Tuṣi p. 3
وهو ' ينصف الدائرة ويحيط مع نصفي المحيط بكل واحد من النصفين والذي لا يمر به ' يحيط مع قسمي المحيط بقطعتين أصغر وأكبر من النصف
per Shirazi p. 8,19-9,4
و با هر یکی از دو نصف محیط محیط شود بنصفی از دایره ،، من میکویم مناسب ان بودی کی این حکم را در اصول موضوعه کفتندی نه در حدود و اکر خطی مستقیم در هر دو جهت بمحیط رسیده باشد و بمرکز نکذشته محیط شود با هر دو پاره محیط بدو قطعه یکی کوجکتر از نیمه و یکی بزرکتر از ان
san 5,4-5
(4) yā rekhā kendragā syāt kiṃ ca pālilagnā syāt tad ubhayataḥ khaṇḍa(5)dvayaṃ viṣamaṃ bhavati sā rekhā ca_apakarṇasaṃjñā pūrṇajyāsaṃjñā ca bhavati |
Pic395
lat Clavius p. 14-15
XVIII. SEMICIRCVLVS verò est figura, quæ continetur sub diametro, & sub ea linea, quæ de circuli peripheria aufertur.
EXEMPLI gratia, in superiori circulo figura A D B, contentæ sub diametro A B, & peripheria A D B, dicitur semicirculus, quia, vt in præcedenti definitione ostendimus, ea est dimidiata pars circuli. Eadem ratione erit figura A E B, semicirculus. Idem autem punctum C diametrum secans bifariam, centrum est in circulo, & in semicirculo.
QVOD sirecta linea B D, nontranseat per centrum E, secabitur circulus ab ea non bifariam, sed in duas portiones inæquales B A D, B C D, quarum ea, in qua centrum circuli existit, cuiusmodi est portio B A D, maior est, quàm alia B C D, extra quàm centrum E, reperitur, Esse autem portiones B A D, B C D, inæquales, it a probari potest. Concipiatur per centrum E, ducta diameter ad rectam B D, perpendicularis A G. Si igitur dictæ portiones dicantur esse æquales, & portio B C D, intelligatur moueri circarectam B D, vt super portionem B A D, cadat, congruet illa portio huic, & recta F C, rectæ F A, congruet, ob angulos rectos ad F, qui omnes inter se æquales sunt ex defin. 10. cum sint sibi mutuo deinceps. Recta ergo F C, quæ nune eademest, quæ F A, maior erit, quàm E A, pars ipsius F A. Cumergoipsi E A, sit æqualis E C, quod ambæ ducantur è centroad circumferentiam, erit quoque F C, maior quàm E C, pars quàm totum, quod est absurdum. Non igitur portio B C D, portioni B A D, congruet, sed intra eam cadet, cuiusmodi est portio B G D, vt recta F G, eadem tunc existens, quæ F C, minor possit esse quàm E A, vel E C. Sinamque diceretur cadere extra, vt si circulus esset B C D G, cuius centrum E, & portio B C D, caderet extra B G D, qualis est portio B A D, esset rursus F A, eadem tunc existens, quæ F C, maior quàm E G, hoc est, quàm E C, atque ita pars F C, maior rursum foret toto E C. quod absurdum est. Ex quo patet, portionem B A D, in qua cextrum E, existit, maiorem esse reliqua portione B C D, cum hæc æqualis sit portioni B G D, quæ pars est portionis B A D. Cum enim osten sum sit, portionem B C D, circa rectam B D, circumductam non posse congruere portiont B A D, nequé cadere extra, cadet omnino intra, qualis est B G D.
Pic3348
kin 幾何原本 p.7
第十八界
徑線與半圜之界所作形。為半圜。
Pic419
Pic421
http://www2.hf.uio.no/common/apps/permlink/permlink.php?app=polyglotta&context=record&uid=a9ebb27e-561b-11df-870c-00215aecadea
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login