lat Clavius p. 27VIII. ET quæ sibi mutuo congruunt, ea inter se sunt æqualia.
HOC est, duæ quantitates, quarum vna superposita alteri, neutra alteram excedit, sed ambæ inter se congruunt, æquales erunt. Vt duæ lineæ rectæ dicentur esse æquales, quando vna alteri superposita, eaquæ superponitur, alteri tota congruit, ita vt eam nec excedat, nec ab ea excedatur. Sic etiam duo anguli rectilinei æquales erunt, quãdo vno alteri superposito, is qui superponitur, alterum nec excedit, nec ab eo exceditur, sed lineæ illius cum lineis huius prorsus coincidunt: Ita enim erunt inclinationes linearum æquales, quamuis lineæ interdum inter se inæquales existant.
E CONTRARIO, Quæ inter se sunt æqualia, sibi mutuo congruent, si alterum alteri superponatur. Intelligendum est autem, quantitates sibi mutuo congruentes, esse æquales, secundum id duntaxat, in quo sibi congruunt. Congruit autem longitudo longitudini tantum, superficies superficiei, solidum solido, linearum inclinatio inclinationi linearum, &c.