gre I,2λοιπὴ ἄρα ἡ ΑΛ λοιπῇ τῇ ΒΗ ἐστὶν ἴση.
engtherefore the remainder AL is equal to the remainder BG. [C.N. 3]
lat Sicreliqua ergo AL relique BI equalis est.
lat GerardErgo linea AE que reliqua est linee BZ relique est equalis.
lat HermannQuia vero: si equalia equalibus demas que remanent equalia sunt, lineis DA et DB resectis que remanent id est AE semel et BH equales esse constat.
1. The Arabic text of the rest of this proposition should be compared with other MSS than the Uppsala MS. The text as it stands is clearly an attempt to avoid the standard repetitive style of the ”proof”, and this might belong to one of the early translations/revisions (there is at least no apparent reason why a copyist should have introduced these emendations). Compare Gerard.
san 10,2-3tasmāt (3) aharekhā bajharekhā ca samānā jātā |
lat Clavius p. 40Sed eidem C E,
1
æqualis est recta B C. (cùm ambæ rectæ C B, C E, cadant ex centro C, ad circumferentiam B E.)
1. 15. def.
http://www2.hf.uio.no/common/apps/permlink/permlink.php?app=polyglotta&context=record&uid=a9f33792-561b-11df-870c-00215aecadea