You are here: BP HOME > BPG > Euclid: Elementa > fulltext
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
    Click to Expand/Collapse Option Complete text
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
Proposition 12. 
PROBL. 7. PROPOS. 12. 
第十二題 
To a given infinite straight line, from a given point which is not on it, to draw a perpendicular straight line. 
SVPER datam rectam lineam infinitam, a dato puncto, quod in ea non est, perpendicularem rectam deducere. 
有無界直線。線外有一點。求於點上作垂線。至直線上。 
Let AB be the given infinite straight line, and C the given point which is not on it;  thus it is required to draw to the given infinite straight line AB, from the given point C which is not on it, a perpendicular straight line. 
Sit recta A B, interminatæ quantitatis, & extra ipsam punctum C,  a quo oporteat lineam perpendicularem deducere ad rectam A B. 
 
For let a point D be taken at random on the other side of the straight line AB,  and with centre C and distance CD let the circle EFG be described; [Post. 3]  let the straight line EG be bisected at H, [I. 10]  and let the straight lines CG, CH, CE be joined. [Post. 1]  I say that CH has been drawn perpendicular to the given infinite straight line AB from the given point C which is not on it. 
1   Centro C, interuallo vero quolibet circulus describatur secans A B, in D, & E. (quoniam interuallum assumptum tantum esse debet, ut transcendat rectam A B; alias eam non secaret. Diuisa autem recta D E, bifariam in F,   ducatur recta C F,   quam dico perpendicularem esse ad A B. 
For, since GH is equal to HE, and HC is common,  the two sides GH, HC are equal to the two sides EH, HC respectively;  and the base CG is equal to the base CE;  therefore the angle CHG is equal to the angle EHC. [I. 8]  And they are adjacent angles.  But, when a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right,  and the straight line standing on the other is called a perpendicular to that on which it stands. [Def. 10] 
Si enim ducantur C D, C E,   erunt duo latera D F, F C, trianguli D F C, æqualia duo bus lateribus E F, F C, trianguli E F C, utrumque utrique, per constructionem;  est autem & basis C D, basi C E, æqualis, cum hæ sint ex centro C, ad circumferentiam.   Quare erit angulus D F C, angulo E F C, æqualis,   & propterea uterque rectus.     
Therefore CH has been drawn perpendicular to the given infinite straight line AB from the given point C which is not on it.  Q. E. F. 
Ducta est igitur C F, perpendicularis,  quod faciendum erat.

SCHOLION
PROBE apposuit Euclides hanc particulam: infinitam. Si enim linea esset infinita, non posset semper a puncto dato extra ipsam perpendicularis ad eam deduci. Ut si linea finita esset B E, & punctum C, non posset ex C, describi circulus secans B E, in duobus punctis, quare neque ex C, perpendicularis duci ad B E. Hac igitur de causa vult Euclides, rectam datam esse infinitam, hoc est, non habere magnitudinem determinatam, ut saltem ad ipsam productam perpendicularis possit deduci. Ita enim fiet hic, si B E, producatur, donec circulus ex C, descriptus secet totam B A, productam in D, & E, &c.

PRAXIS
CENTRO facto C, & interuallo quovis eodem, describantur duo arcus secantes rectam datam in A, & B. Deinde ex A, & B, eodemque interuallo, vel alio, si placuerit, alii duo arcus describantur secantes se in D. Nam ducta recta C D secans A B, in E, erit perpendicularis ad A B. Demonstratio huius operationis non differt a demonstratione tradita in praxi propositionis 10. Nam anguli ad E, erunt recti, nempe inter se æquales.
IDEM officiemus hoc modo. Ex quovis puncto A, in linea data, & interuallo quolibet usque ad C, assumpto, arcus circuli describatur: Deinde ex quolibet alio puncto B, interualloque usque ad idem C, alius arcus describatur priorem secans in C, & D; Eritque recta C D, secans A E, in E, perpendicularis ad A B. Demonstratio eadem est, quæ prior. Non est autem necesse, ut intervallum B C, æquale sit intervallo A C, ut in hac figura apparet. Facilior tamen erit, & breuior operatio, si idem semper intervallum accipiatur.
 
 
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login