You are here: BP HOME > BPG > Euclid: Elementa > fulltext
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
    Click to Expand/Collapse Option Complete text
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
Proposition 33. 
THEOR. 23. PROPOS. 33. 
第三十三題 
The straight lines joining equal and parallel straight lines (at the extremities which are) in the same directions (respectively) are themselves also equal and parallel. 
RECTÆ lineæ, quæ æquales, & parallelas lineas ad partes easdem coniungunt; Et ipsæ æquales, & parallelæ sunt. 
兩平行相等線之界。有兩線聯之。其兩線亦平行。亦相等。 
Let AB, CD be equal and parallel, and let the straight lines AC, BD join them (at the extremities which are) in the same directions (respectively);  I say that AC, BD are also equal and parallel. 
SINT rectæ lineæ A B, C D, æquales, & parallelæ; Ipsas autem coniungant ad easdem partes rectæ A C, B D.  Dico A C, B D, æquales quoque esse, & parallelas. 
Let BC be joined.  Then, since AB is parallel to CD, and BC has fallen upon them, the alternate angles ABC, BCD are equal to one another. [I. 29]  And, since AB is equal to CD, and BC is common, the two sides AB, BC are equal to the two sides DC, CB;  and the angle ABC is equal to the angle BCD;  therefore the base AC is equal to the base BD  and the triangle ABC is equal to the triangle DCB,  and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend; [I. 4]  therefore the angle ACB is equal to the angle CBD.  And, since the straight line BC falling on the two straight lines AC, BD has made the alternate angles equal to one another, AC is parallel to BD. [I. 27]  And it was also proved equal to it. 
Ducatur enim recta A D.  Quoniam igitur A D, incidit in parallelas A B, C D, erunt anguli alterni B A D, C D A, æquales.  Quare cum duo latera B A, A D, trianguli B A D, æqualia sint duobus lateribus C D, D A, trianguli C D A, utrumque utrique,  & anguli quoque dictis lateribus inclusi æquales;  erunt bases B D, A C, æquales,      & angulus A D B, angulo D A C, æqualis.  Cum igitur hi anguli sint alterni inter rectas A C, B D, erunt A C, B D, parallelæ:  Probatum autem iam fuit, eadem esse æquales. 
Therefore etc.  Q. E. D. 
Rectæ ergo lineæ, quæ æquales, & parallelas lineas, &c.  Quod erat demonstrandum.

SCHOLION
DIXIT Euclides, lineas æquales, & parallelas ad easdem partes debere coniungi, ut ipsæ coniungentes sint & æquales & parallelæ. Nam si ad partes diuersas coniungerentur, ut ad A, & D. Item ad B, & C, neque coniungentes lineæ essent parallelæ unquam, sed perpetuo se mutuo secarent, neque essent æquales, nisi raro admodum, ut ex sequenti propositione constabit.
 
 
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login