You are here: BP HOME > BPG > Euclid: Elementa > fulltext
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
    Click to Expand/Collapse Option Complete text
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
Proposition 5. 
THEOR. 2. PROPOS. 5. 
第五題 
In isosceles triangles the angles at the base are equal to one another,  and, if the equal straight lines be produced further, the angles under the base will be equal to one another. 
ISOSCELIVM triangulorum, qui ad basim sunt, anguli inter se sunt æquales:  Et productis æqualibus rectis lineis, qui sub basi sunt, anguli inter se æquales erunt. 
三角形。若兩腰等。則底線兩端之兩角等。  而兩腰引出之。其底之外兩角亦等。 
Let ABC be an isosceles triangle having the side AB equal to the side AC;  and let the straight lines BD, CE be produced further in a straight line with AB, AC. [Post. 2]  I say that the angle ABC is equal to the angle ACB, and the angle CBD to the angle BCE. 
SIT triangulum Isosceles A B C, in quo latera A B, A C, inter se sint æqualia.    Dico angulos A B C, A C B, supra basim B C, æquales inter se esse: Item si latera æqualia A B, A C, producantur quantum libuerit, vsque ad puncta D, & E, angulos quoque D B C, E C B, infra basim eandem B C, esse æquales. 
解曰。甲乙丙三角形。其甲丙、與甲乙、兩腰等。    題言甲丙乙與甲乙丙兩角等, 又自甲丙線任引至戊, 甲乙線任引至丁, 其乙丙戊與丙乙丁兩外角亦等。 
Let a point F be taken at random on BD; from AE the greater let AG be cut off equal to AF the less; [I. 3] and let the straight lines FC, GB be joined. [Post. 1] 
Ex linea enim A E, producta infinite abscindatur A F, æqualis ipsi 1 A D, & ducantur rectæ B F, C D. Confiderentur deinde duo triangula A B F, A C D. 
論曰。試如甲戊線稍長。卽從甲戊截取一分。與甲丁等。為甲己。本篇三 次自丙至丁乙至己。各作直線。第一求卽甲己乙、甲丁丙、兩三角形必等。 
Then, since AF is equal to AG and AB to AC, the two sides FA, AC are equal to the two sides GA, AB, respectively;  and they contain a common angle, the angle FAG.  Therefore the base FC is equal to the base GB,  and the triangle AFC is equal to the triangle AGB,  and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend,  that is, the angle ACF to the angle ABG, and the angle AFC to the angle AGB. [I. 4]  And, since the whole AF is equal to the whole AG, and in these AB is equal to AC, the remainder BF is equal to the remainder CG.  But FC was also proved equal to GB;  therefore the two sides BF, FC are equal to the two sides CG, GB respectively;  and the angle BFC is equal to the angle CGB, while the base BC is common to them;  therefore the triangle BFC is also equal to the triangle CGB, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend;  therefore the angle FBC is equal to the angle GCB, and the angle BCF to the angle CBG.  Accordingly, since the whole angle ABG was proved equal to the angle ACF,  and in these the angle CBG is equal to the angle BCF,  the remaining angle ABC is equal to the remaining angle ACB;  and they are at the base of the triangle ABC.  But the angle FBC was also proved equal to the angle GCB;  and they are under the base. 
Quia ergo duo latera A B, A F, trianguli A B F, æqualia sunt duobus lateribus A C, A D, trianguli A C D, utrumque utrique, nempe A B, ipsi A C, ex hypothesi, & A F, ipsi A D, ex constructione; angulusque A, contentus lateribus A B, A F, æqualis est angulo A, contento lateribus A C, A D,  immo angulus A, communis est utrique triangulo:   Erit basis B F, æqualis basi C D;  & angulus F, angulo D; & angulus A B F, angulo A C D; cum & priores duo, & posteriores opponantur æqualibus lateribus in dictis triangulis, ut patet. Rursus considerentur duo triangula B D C, C F B.      Quoniam vero rectæ A D, A F, æquales sunt, per constructionem, fit ut, si auferantur ex ipsis æquales A B, A C, & reliquæ B D, & C F, sint æquales.    Quare duo latera B D, D C, trianguli B D C, æqualia sunt duobus lateribus C F, F B, trianguli C F B, utrumque utrique, videlicet B D, ipsi C F, & D C, ipsi F B, ut probatum est.  Sunt autem & anguli D, & F, contenti dictis lateribus æqualibus æquales, ut ostensum etiam fuit. Igitur erit angulus D B C, angulo F C B, æqualis; & angulus B C D, angulo C B F. Tam enim priores duo, quam posteriores, æqualibus opponunturlateribus, existuntque supra communem basim B C, utriusque trianguli B D C, C F B.          Quod si ex totis angulis æqualibus A B F, A C D, (quos æquales esse iam demonstrauimus in prioribus triangulis) detrahantur anguli æquales C B F, B C D, (quos itidem in posterioribus triangulis modo probauimus esse æquales) remanebunt anguli A B C, A C B, supra basim B C, æquales.    Ostensum est autem in posterioribus triangulis, & angulos D B C, F C B, qui quidem sunt infra eandem basim B C, esse æquales.    
論曰。試如甲戊線稍長。卽從甲戊截取一分。與甲丁等。為甲己。本篇三 次自丙至丁乙至己。各作直線。第一求卽甲己乙、甲丁丙、兩三角形必等。  何者此兩形之甲角同。 
Therefore etc.    Q. E. D. 
Igitur & anguli supra basim inter se, & anguli infra eandem inter se sunt æquales;   Ac propterea isoscelium triangulorum, qui ad basim sunt anguli, &c.   Quod erat demonstrandum.  
 
SCHOLION
HÆC propositio vera etiam est in triangulis æquilateris, cum in quolibet reperiantur duo laterainter se æqualia, licet eam Euclides solis isoscelibus triangulis videatur accommodasse. Existentibus enim duobus lateribus A B, A C, trianguli A B C, æqualibus; siue reliquum latus B C, ipsis quoque sit æquale, ut contingit in triangulo æquilatero, siue inæquale, ut in isoscele accidit, necessario consequitur, & angulos supra basim inter se, & angulos infra eandem inter se quoque esse æquales, vt constat ex demonstratione prædicta. Solet autem theorema hoc tyronibus subdifficile, & obscuriusculum videri, propter multitudinem linearum, & angulorum, quibus nondum sunt assueti. Verum tamen, si diligenter theorematis præcedentis uis ac demonstratio ponderetur, non multo labore boc, quod præ manibus babemus, a quolibet percipietur, si modo memor sit, illos angulos triangulorum probari æquales esse in antecedenti theoremate, qui æqualibus lateribus opponuntur. Quod quidem, quoniam Campanus non apposuit, causa fuit, ut confusa esse videatur, & subobscura eius demonstratio.
COROLLARIUM
Ex hac propofitione quinta liquet, omne triangulum æquilaterum esse æquiangulum quoque: Hoc est, tres angulos cuiuslibet trianguli æquilateri esse inter se æquales. Sit enim triangulum æquilaterum A B C. Quoniam igitur duo latera A B, A C, sunt æqualia, erunt duo anguli B, C æquales. Item quia duo latera A B, B C, sunt æqualia, erunt & anguli C, & A, æquales. Quare omnes tres A, B, & C, æquales erunt. Quod ostendendum erat. 
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login