You are here: BP HOME > BPG > Euclid: Elementa > fulltext
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
    Click to Expand/Collapse Option Complete text
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
PROPOSITION 65. 
 
 
The square on the side of the sum of two medial areas applied to a rational straight line produces as breadth the sixth binomial. 
 
 
Let AB be the side of the sum of two medial areas, divided at C, let DE be a rational straight line, and let there be applied to DE the parallelogram DF equal to the square on AB, producing DG as its breadth;  I say that DG is a sixth binomial straight line. 
   
   
For let the same construction be made as before.  Then, since AB is the side of the sum of two medial areas, divided at C,  therefore AC, CB are straight lines incommensurable in square which make the sum of the squares on them medial, the rectangle contained by them medial, and moreover the sum of the squares on them incommensurable with the rectangle contained by them, [X. 41]  so that, in accordance with what was before proved, each of the rectangles DL, MF is medial.  And they are applied to the rational straight line DE;  therefore each of the straight lines DM, MG is rational and incommensurable in length with DE. [X. 22]  And, since the sum of the squares on AC, CB is incommensurable with twice the rectangle AC, CB,  therefore DL is incommensurable with MF.  Therefore DM is also incommensurable with MG; [VI. 1, X. 11]  therefore DM, MG are rational straight lines commensurable in square only;  therefore DG is binomial. [X. 36]  I say next that it is also a sixth binomial straight line. 
                       
                       
Similarly again we can prove that the rectangle DK, KM is equal to the square on MN, and that DK is incommensurable in length with KM;  and, for the same reason, the square on DM is greater than the square on MG by the square on a straight line incommensurable in length with DM.  And neither of the straight lines DM, MG is commensurable in length with the rational straight line DE set out. 
     
     
Therefore DG is a sixth binomial straight line.  Q. E. D. 
   
   
 
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login