You are here: BP HOME > BPG > Euclid: Elementa > fulltext
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
    Click to Expand/Collapse Option Complete text
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
PROPOSITION 20. 
Theor. 20 Propos. 20 
第二十題 三支 
Similar polygons are divided into similar triangles, and into triangles equal in multitude and in the same ratio as the wholes, and the polygon has to the polygon a ratio duplicate of that which the corresponding side has to the corresponding side. 
Si sint tres magnitudines, et aliae ipsis aequales numero, quae binae, et in eadem ratione sumantur; ex aequo autem prima quam tertia, maior fuerit; Erit et quarta quam sexta, maior. Quod si prima quam tertia fuerit aequalis, erit et quarta aequalis sextae; sin illa minor, haec quoque minor erit. 
以三角形、分相似之多邊直線形。則分數必等。而相當之各三角形、各相似。其各相當兩三角形之比例。若兩元形之比例。其元形之比例。為兩相似邊再加之比例。 
Let ABCDE, FGHKL be similar polygons, and let AB correspond to FG;  I say that the polygons ABCDE, FGHKL are divided into similar triangles, and into triangles equal in multitude and in the same ratio as the wholes, and the polygon ABCDE has to the polygon FGHKL a ratio duplicate of that which AB has to FG. 
SINT tres magnitudines A, B, C, et totidem D, E, F, sitque A, ad B, ut D, ad E; et B, ad C, ut E, ad F, sit autem primum A, prima maior quam C, tertia. Dico et D, quartam esse maiorem F, sexta. Cum enim A, maior sit quam C, erit maior proportio A, ad B, 8. quinti. quam C, ad B. Estautem ut A, ad B, ita D, ad E. Maior igitur 13. quinti. proportio quoque erit D, ad E, quam C, ad B. At ut C, ad B, ita est F, ad E. (Cum enim sit B, ad C, ut E, ad F, erit conuertendo ut C, ad B, ita F, ad E.) Maiorigitur quoque proportio erit D, ad E, quam 10. quinti. F, ad E. Quare D, maior erit, quam F. Quod est propositum.   
先解曰。此甲乙丙丁戊、彼己庚辛壬癸、兩多邊直線形。其乙甲戊、庚己癸、兩角等。餘相當之各角俱等。而各等角旁各兩邊之比例各等。  題先言各以角形分之。其角形之分數必等。而相當之各角形各相似。 
Let BE, EC, GL, LH be joined. 
 
論曰。試從乙甲戊、庚己癸、兩角。向各對角、俱作直線。為甲丙、甲丁、己辛、己壬。 
Now, since the polygon ABCDE is similar to the polygon FGHKL,  the angle BAE is equal to the angle GFL;  and, as BA is to AE, so is GF to FL. [VI. Def. 1]  Since then ABE, FGL are two triangles having one angle equal to one angle and the sides about the equal angles proportional,  therefore the triangle ABE is equiangular with the triangle FGL; [VI. 6]  so that it is also similar; [VI. 4 and Def. 1]  therefore the angle ABE is equal to the angle FGL.  But the whole angle ABC is also equal to the whole angle FGH because of the similarity of the polygons;  therefore the remaining angle EBC is equal to the angle LGH.  And, since, because of the similarity of the triangles ABE, FGL, as EB is to BA, so is LG to GF,  and moreover also, because of the similarity of the polygons, as AB is to BC, so is FG to GH,  therefore, ex aequali, as EB is to BC, so is LG to GH; [V. 22]  that is, the sides about the equal angles EBC, LGH are proportional;  therefore the triangle EBC is equiangular with the triangle LGH, [VI. 6]  so that the triangle EBC is also similar to the triangle LGH. [VI. 4 and Def. 1]  For the same reason the triangle ECD is also similar to the triangle LHK.  Therefore the similar polygons ABCDE, FGHKL have been divided into similar triangles, and into triangles equal in multitude. 
                              SIT deinde A, aequalis ipsi C. Dico et D, aequalem esse ipsi F. Cum enim A, sit ipsi C, aequalis, erit A, ad B, ut C, ad B. Est autem ut A, ad B, ita 7. quinti. D, ad EIgitur erit et D, ad E, ut C, ad B: At ut C, ad B, ita est F, ad E, per inuersam rationem, 11. quinti. uti prius. Quare erit quoque D, ad E, ut F, ad E; Ideoque aequales erunt D, et F. Quod est pro9. quinti. positum. SIT tertio A, minor quam C. Dico et D, minorem esse, quam F. Cum enim A, minor sit quam C, erit minor proportio A, ad 8. quinti. B, quam C, ad B. sed ut A, ad B, ita est D, ad E. Minor ergo quoque proportio est D, ad 13. quinti. E, quam C, ad B. Est autem conuertendo, ut prius, ut C, ad B, ita F, ad E. Igitur minor est quoque proportio D, ad E, quam F, ad E, proptereaque D, minor erit quam F. Quod 10. quinti. est propositum. si sint itaque tres magnitudines, et aliae ipsis aequales numero, etc.   
其元形旣相似。卽角數等。而所分角形之數亦等。  又乙角旣與庚角等。而角旁各兩邊之比例亦等。卽甲乙丙、與己庚辛、兩角形必相似。本篇六乙甲丙、與庚己辛、兩角。甲丙乙、與己辛庚、兩角。各等。而各等角旁、各兩邊之比例、各等。本篇四依顯甲戊丁、己癸壬、兩角形亦相似。又甲丙與丙乙之比例。旣若己辛與辛庚。而丙乙與丙丁。若辛庚與辛壬。兩元形相似故平之。卽甲丙與丙丁。若己辛與辛壬也。五卷廿二又乙丙丁角。旣與庚辛壬角等。而各減一相等之甲丙乙角、己辛庚角。卽所存甲丙丁角、與己辛壬角、必等。則甲丙丁與己辛壬兩角形。亦等角形。亦相似矣。本篇六                               
I say that they are also in the same ratio as the wholes, that is, in such manner that the triangles are proportional, and ABE, EBC, ECD are antecedents, while FGL, LGH, LHK are their consequents, and that the polygon ABCDE has to the polygon FGHKL a ratio duplicate of that which the corresponding side has to the corresponding side, that is AB to FG. 
 
次解曰。題又言各相當角形之比例。若兩元形之比例。 
For let AC, FH be joined.  Then since, because of the similarity of the polygons, the angle ABC is equal to the angle FGH,  and, as AB is to BC, so is FG to GH,  the triangle ABC is equiangular with the triangle FGH; [VI. 6]  therefore the angle BAC is equal to the angle GFH, and the angle BCA to the angle GHF.  And, since the angle BAM is equal to the angle GFN,  and the angle ABM is also equal to the angle FGN,  therefore the remaining angle AMB is also equal to the remaining angle FNG; [I. 32]  therefore the triangle ABM is equiangular with the triangle FGN.  Similarly we can prove that the triangle BMC is also equiangular with the triangle GNH.  Therefore, proportionally, as AM is to MB, so is FN to NG,  and, as BM is to MC, so is GN to NH; so that,  in addition, ex aequali, as AM is to MC, so is FN to NH.  But, as AM is to MC, so is the triangle ABM to MBC, and AME to EMC;  for they are to one another as their bases. [VI. 1]  Therefore also, as one of the antecedents is to one of the consequents, so are all the antecedents to all the consequents; [V. 12]  therefore, as the triangle AMB is to BMC, so is ABE to CBE.  But, as AMB is to BMC, so is AM to MC;  therefore also, as AM is to MC, so is the triangle ABE to the triangle EBC.  For the same reason also, as FN is to NH, so is the triangle FGL to the triangle GLH.  And, as AM is to MC, so is FN to NH;  therefore also, as the triangle ABE is to the triangle BEC, so is the triangle FGL to the triangle GLH;  and, alternately, as the triangle ABE is to the triangle FGL, so is the triangle BEC to the triangle GLH.  Similarly we can prove, if BD, GK be joined,  that, as the triangle BEC is to the triangle LGH, so also is the triangle ECD to the triangle LHK.  And since, as the triangle ABE is to the triangle FGL, so is EBC to LGH,  and further ECD to LHK,  therefore also, as one of the antecedents is to one of the consequents so are all the antecedents to all the consequents; [V. 12]  therefore, as the triangle ABE is to the triangle FGL, so is the polygon ABCDE to the polygon FGHKL.  But the triangle ABE has to the triangle FGL a ratio duplicate of that which the corresponding side AB has to the corresponding side FG;  for similar triangles are in the duplicate ratio of the corresponding sides. [VI. 19]  Therefore the polygon ABCDE also has to the polygon FGHKL a ratio duplicate of that which the corresponding side AB has to the corresponding side FG. 
                                                               
論曰。甲乙丙、己庚辛、兩角形旣相似。卽兩形之比例。為甲丙、己辛、兩相似邊再加之比例。本篇十九依顯甲丙丁、己辛壬、之比例。亦為甲丙、己辛、再加之比例。則甲乙丙與己庚辛兩角形之比例。若甲丙丁與己辛壬兩角形之比例。依顯甲丁戊與己壬癸之比例。亦若甲丙丁與己辛壬之比例。則此形中諸角形之比例。若彼形中諸角形之比例。此諸形為前率。彼諸形為後率。而一前與一後之比例。又若幷前與幷後之比例。五卷十二卽此一角形、與相當彼一角形之比例。若此元形、與彼元形之比例矣。

後解曰。題又言兩多邊元形之比例。為兩相似邊再加之比例。
論曰。甲乙丙、與己庚辛、兩角形之比例。旣若甲乙丙丁戊、與己庚辛壬癸、兩多邊形之比例。而甲乙丙、與己庚辛、兩形之比例。為甲乙、己庚、兩相似邊再加之比例。本篇十九則兩元形亦為甲乙、己庚、再加之比例。
增題。此直線、倍大于彼直線。則此線上方形、與彼線上方形。為四倍大之比例。若此方形、與彼方形、 為四倍大之比例。則此方形邊、與彼方形邊、為二倍大之比例。

先解曰。甲線、倍乙線。題言甲上方形、與乙上方形。為四倍大之比例。

論曰。凡直角方形、俱相似。本卷界說一依本題論。則甲方形與乙方形之比例。為甲線與乙線再加之比例。甲線與乙線。旣為倍大之比例。則兩方形為四倍大之比例矣。何者。四倍大之比例。為二倍大再加之比例。若一、二、四、為連比例故也。

後解曰。若甲上方形、與乙上方形、為四倍大之比例。題言甲邊、與乙邊、為二倍大之比例。
論曰。兩方形四倍大之比例。旣為兩邊再加之比例。則甲邊二倍大于乙邊。                                                               

Therefore etc. 
 
 
PORISM.
Similarly also it can be proved in the case of quadrilaterals that they are in the duplicate ratio of the corresponding sides.
And it was also proved in the case of triangles; therefore also, generally, similar rectilineal figures are to one another in the duplicate ratio of the corresponding sides. 
Q. E. D. 
   

系。依此題。可顯三直線為連比例。如甲、乙、丙。則第一線上多邊形、與第二線上相似多邊形之比例。若第一線與第三線之比例。

此系與本篇第十九題之系同論。    

 
PORRO propositione 22. ostendet Euclides, A, et D, magnitudines non solum esse maiores, vel aequales, vel minores duabus magnitudinibus C, et E, ut hic demonstrauit, sed etiam illas ad has eandem habere proportionem ex aequalitate: quod quidem demonstrare non poterat, nisi prius theorema hoc ostendisset, ut ex eadem propositione 22. erit perspicuum. 
 
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login