You are here: BP HOME > BPG > Euclid: Elementa > fulltext
Euclid: Elementa

Choose languages

Choose images, etc.

Choose languages
Choose display
  • Enable images
  • Enable footnotes
    • Show all footnotes
    • Minimize footnotes
Search-help
Choose specific texts..
    Click to Expand/Collapse Option Complete text
Click to Expand/Collapse OptionTitle
Click to Expand/Collapse OptionPreface
Click to Expand/Collapse OptionBook I
Click to Expand/Collapse OptionBook ΙI
Click to Expand/Collapse OptionBook IΙΙ
Click to Expand/Collapse OptionBook IV
Click to Expand/Collapse OptionBook V
Click to Expand/Collapse OptionBook VI
Click to Expand/Collapse OptionBook VII
Click to Expand/Collapse OptionBook VIII
Click to Expand/Collapse OptionBook ΙΧ
Click to Expand/Collapse OptionBook Χ
Click to Expand/Collapse OptionBook ΧI
Click to Expand/Collapse OptionBook ΧIΙ
Click to Expand/Collapse OptionBook ΧIΙΙ
PROPOSITION 16. 
PROBL. 16. PROPOS. 16. 
第十六題 
In a given circle to inscribe a fifteen-angled figure which shall be both equilateral and equiangular. 
IN dato circulo, quintidecagonum & æquilaterum, & æquiangulum describere. 
有圜。求作圜內十五邊切形。其形等邊。等角。 
Let ABCD be the given circle;  thus it is required to inscribe in the circle ABCD a fifteenangled figure which shall be both equilateral and equiangular. 
   
   
In the circle ABCD let there be inscribed a side AC of the equilateral triangle inscribed in it, and a side AB of an equilateral pentagon;  therefore, of the equal segments of which there are fifteen in the circle ABCD,  there will be five in the circumference ABC which is one-third of the circle,  and there will be three in the circumference AB which is one-fifth of the circle;  therefore in the remainder BC there will be two of the equal segments.  Let BC be bisected at E; [III. 30]  therefore each of the circumferences BE, EC is a fifteenth of the circle ABCD. 
             
             
If therefore we join BE, EC and fit into the circle ABCD straight lines equal to them and in contiguity,  a fifteen-angled figure which is both equilateral and equiangular will have been inscribed in it.  Q. E. F. 
     
     
And, in like manner as in the case of the pentagon, if through the points of division on the circle we draw tangents to the circle,  there will be circumscribed about the circle a fifteen-angled figure which is equilateral and equiangular.  And further, by proofs similar to those in the case of the pentagon, we can both inscribe a circle in the given fifteenangled figure and circumscribe one about it.  Q. E. F. 
       
      一系。依前十二、十三、十四題。可作外切圜十五邊形。又十五邊形內。可作切圜。又十五邊形外。可作切圜。
注曰。依此法。可設一法作無量數形。如本題圖。甲乙圜分。為三分圜之一。卽命三。甲戊圜分。為五分圜之一。卽命五。三與五相乘。得十五。卽知此兩分法。可作十五邊形。又如甲乙命三。甲戊命五。三與五較得二。卽知戊乙得十五分之二。因分戊乙為兩平分。得壬乙線為十五分之一。可作內切圜十五邊形也。以此法為例。作後題。
增題。若圜內從一點、設切圜兩不等等邊等角形之各一邊。此兩邊。一為若干分圜之一。一為若干分圜之一。此兩若干分相乘之數。卽後作形之邊數。此兩若干分之較數。卽兩邊相距之圜分、所得後作形邊數內之分。
法曰。甲乙丙丁戊圜內。從甲點、作數形之各一邊。如甲乙為六邊形之一邊。甲丙為五邊形之一邊。甲丁為四邊形之一邊。甲戊為三邊形之一邊。甲乙命六。甲丙命五。較數一。卽乙丙圜分、為所作三十邊等邊等角形之一邊。何者。五六相乘為三十。故當作三十邊也。較數一。故當為一邊也。(p. 二○八)
論曰。甲乙圜分。為六分圜之一。卽得三十分圜之五。而甲丙為五分圜之一。卽得三十分圜之六。則乙丙得三十分圜之一也。依顯乙丁為二十四邊形之二邊也。何者。甲乙命六。甲丁命四。六乘四得二十四也。又較數二也。依顯乙戊為十八邊形之三邊也。丙丁為二十邊形之一邊也。丙戊為十五邊形之二邊也。丁戊為十二邊形之一邊也。
二系。凡作形於圜之內。等邊、則等角。何者。形之角。所乘之圜分皆等、故。三卷 \\ 廿七凡作形於圜之外。卽從圜心、作直線、抵各角。依本篇十二題可推顯各角等。
三系。凡等邊形。旣可作在圜內。卽依圜內形。可作在圜外。卽形內可作圜。卽形外亦可作圜。皆依本篇十二、十三、十四題。
四系。凡圜內有一形。欲作他形。其形邊、倍於此形邊。卽分此形一邊所合之圜分、為兩平分。而每分各作一合線。卽三邊可作六邊。四邊可作八邊倣此以至無窮。
又補題。圜內有同心圜。求作一多邊形。切大圜不至小圜。其多邊、為偶數、而等。
法曰。甲乙丙、丁戊、兩圜。同以己為心。求於甲乙丙大圜內、作多邊切形。不至丁戊小圜。其多邊、為偶數、(p. 二○九)而等。先從己心、作甲丙徑線、截丁戊圜於戊。次從戊、作庚辛、為甲戊之垂線。卽庚辛線、切丁戊圜於戊也。三卷十 \\ 六之系夫甲庚丙圜分。雖大於丙庚。若于甲庚丙、減其半甲乙。存乙丙。又減其半乙壬。存壬丙。又減其半壬癸。如是遞減。至其減餘丙癸。必小於丙庚。如下 \\ 補論卽得丙癸圜分。小於丙庚。而作丙癸合圜線。卽丙癸為所求切圜形之一邊也。次分乙壬圜分。其分數、與丙壬之分數等。次分甲乙。與乙丙分數等。分丙甲。與甲乙丙分數等。則得所求形。三卷 \\ 廿九而不至丁戊小圜。
論曰。試從癸、作癸子。為甲丙之垂線。遇甲丙於丑。其庚戊丑、癸丑戊、兩皆直角。卽庚辛、癸子、為平行線。一卷 \\ 廿八庚辛線之切丁戊圜。旣止一點。卽癸子線、更在其外。必不至丁戊矣。何況丙癸更遠於丑癸乎。依顯其餘與丙癸等邊、同度距心者。三 // 卷十 \\ 四俱不至丁戊圜也。此係十二卷第十六題。因六卷今增 \\ 題、宜藉此論。故先類附於此。
補論。其題曰。兩幾何、不等。若於大率、遞減其大半。必可使其減餘、小於元設小率。(p. 二一○)
解曰。甲乙大率。丙小率。題言於甲乙遞減其大半。至可使其減餘、小於丙。
論曰。試以丙、倍之。又倍之。至僅大於甲乙而止。為丁戊。丁戊之分。為丁己、己庚、庚戊。各與丙等也。次於甲乙減其大半甲辛。存辛乙。又減其大半辛壬。存壬乙。如是遞減。至甲乙與丁戊之分數等。夫甲辛、辛壬、壬乙。與丁己、己庚、庚戊。分數旣等。丁戊、又大於甲乙。若兩率各為兩分。而大丁戊之減丁己、止於半。小甲乙之減甲辛、為大半。卽丁戊之減餘。必大於甲乙之減餘也。若各為多分。而己戊尚多於丙者。卽又於己戊、減己庚。於辛乙、減其大半辛壬。如是遞減。卒至丁戊之末分庚戊。大於甲乙之末分壬乙也。而庚戊元與丙等。是壬乙小於丙也。
又論曰。若於甲乙遞減其半。亦同前論。何者。大丁戊所減。不大於半。則丁戊之減餘。每大於甲乙之減餘。以至末分。亦大於末分。此係十卷第一題。借 \\ 用於此。以足上論。 
BOOK V. 
 
幾何原本第五卷之首 
Go to Wiki Documentation
Enhet: Det humanistiske fakultet   Utviklet av: IT-seksjonen ved HF
Login